Queued Pareto Local Search for Multi-Objective Optimization
نویسندگان
چکیده
Many real-world optimization problems involve balancing multiple objectives. When there is no solution that is best with respect to all objectives, it is often desirable to compute the Pareto front. This paper proposes queued Pareto local search (QPLS), which improves on existing Pareto local search (PLS) methods by maintaining a queue of improvements preventing premature exclusion of dominated solutions. We prove that QPLS terminates and show that it can be embedded in a genetic search scheme that improves the approximate Pareto front with every iteration. We also show that QPLS produces good approximations faster, and leads to better approximations than popular alternative MOEAs.
منابع مشابه
A Multi-Objective Particle Swarm Optimization Algorithm for a Possibilistic Open Shop Problem to Minimize Weighted Mean Tardiness and Weighted Mean Completion Times
We consider an open shop scheduling problem. At first, a bi-objective possibilistic mixed-integer programming formulation is developed. The inherent uncertainty in processing times and due dates as fuzzy parameters, machine-dependent setup times and removal times are the special features of this model. The considered bi-objectives are to minimize the weighted mean tardiness and weighted mean co...
متن کاملPareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm
Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...
متن کاملOptimization of Thermal Instability Resistance of FG Flat Structures using an Improved Multi-objective Harmony Search Algorithm
This paper presents a clear monograph on the optimization of thermal instability resistance of the FG (functionally graded) flat structures. For this aim, two FG flat structures, namely an FG beam and an FG circular plate, are considered. These structures are assumed to obey the first-order shear deformation theory, three-parameters power-law distribution of the constituents, and clamped bounda...
متن کاملDYNAMIC PERFORMANCE OPTIMIZATION OF TRUSS STRUCTURES BASED ON AN IMPROVED MULTI-OBJECTIVE GROUP SEARCH OPTIMIZER
This paper presents an improved multi-objective group search optimizer (IMGSO) that is based on Pareto theory that is designed to handle multi-objective optimization problems. The optimizer includes improvements in three areas: the transition-feasible region is used to address constraints, the Dealer’s Principle is used to construct the non-dominated set, and the producer is updated using a tab...
متن کاملPareto Local Search for Alternative Clustering
Supervised alternative clusterings is the problem of finding a set of clusterings which are of high quality and different from a given negative clustering. The task is therefore a clear multi-objective optimization problem. Optimizing two conflicting objectives at the same time requires dealing with tradeoffs. Most approaches in the literature optimize these objectives sequentially (one objecti...
متن کامل